A Liouville theorem for solutions of the Monge–Ampère equation with periodic data Un théorème de Liouville pour les solutions de l’équation de Monge–Ampère avec données periodiques

نویسندگان

  • L. Caffarelli
  • YanYan Li
چکیده

A classical result of Jörgens, Calabi and Pogorelov states that any strictly convex smooth function u with det(D2u)= constant in Rn must be a quadratic polynomial. We establish the following extension: any strictly convex smooth function u with det(D2u) being 1-periodic in each variable must be the sum of a quadratic polynomial and a function which is 1-periodic in each variable. Given any positive periodic right-hand side, the existence and uniqueness of such solutions are well known.  2003 Elsevier SAS. All rights reserved. Résumé Selon un théorème classique de Jörgens, Calabi et Pogorelov, toute solution régulière et strictement convexe de l’équation det(D2u)= constante dans Rn doit être égale à un polynôme quadratique. On démontre le résultat suivant : si u une fonction régulière et strictement convexe telle que det(D2u) est 1-périodique par rapport à chaque variable, alors u est la somme d’un polynôme quadratique et d’une fonction 1-périodique par rapport à chaque variable. Étant donnée une fonction périodique et positive f , l’existence et l’unicité des solutions de det(D2u)= f est un problème bien connu.  2003 Elsevier SAS. All rights reserved. * Corresponding author. E-mail address: [email protected] (Y.Y. Li). 1 Partially supported by National Science Foundation Grant DMS-0140388 and G-37-X71-G4. 2 Partially supported by National Science Foundation Grant DMS-0100819 and a Rutgers University Research Council Grant. 0294-1449/$ – see front matter  2003 Elsevier SAS. All rights reserved. doi:10.1016/j.anihpc.2003.01.005 98 L. Caffarelli, Y.Y. Li / Ann. I. H. Poincaré – AN 21 (2004) 97–120

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Monge–Ampère constraint: Matching of isometries, density and regularity, and elastic theories of shallow shells

The main analytical ingredients of the first part of this paper are two independent results: a theorem on approximation of W 2,2 solutions of the Monge-Ampère equation by smooth solutions, and a theorem on the matching (in other words, continuation) of second order isometries to exact isometric embeddings of 2d surface in R. In the second part, we rigorously derive the Γ-limit of 3-dimensional ...

متن کامل

Local Regularity of the Complex Monge-Ampère Equation

Local Regularity of the Complex Monge-Ampère Equation Yu Wang In this thesis, we study the local regularity of the complex Monge-Ampère equation, (√ −1∂∂̄u )n = fdx where √ −1∂∂̄u stands for the complex Hessian form and dx the Lebesgue measure. The underline idea of our work is to consider this equation as a full-nonlinear equation and apply modern theory and techniques of elliptic PDEs. Our main...

متن کامل

A Note on Interior W 2,1+ε Estimates for the Monge-ampère Equation

By a variant of the techniques introduced by the first two authors in [DF] to prove that second derivatives of solutions to the Monge-Ampère equation are locally in L logL, we obtain interior W 2,1+ε estimates.

متن کامل

Regularity for Solutions of the Monge-ampère Equation

In this paper we prove that a strictly convex Alexandrov solution u of the Monge-Ampère equation, with right hand side bounded away from zero and infinity, is W 2,1 loc . This is obtained by showing higher integrability a-priori estimates for Du, namely Du ∈ L log L for any k ∈ N.

متن کامل

Second Order Stability for the Monge-ampère Equation and Strong Sobolev Convergence of Optimal Transport Maps

The aim of this note is to show that Alexandrov solutions of the Monge-Ampère equation, with right hand side bounded away from zero and infinity, converge strongly in W 2,1 loc if their right hand side converge strongly in Lloc. As a corollary we deduce strong W 1,1 loc stability of optimal transport maps.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004