A Liouville theorem for solutions of the Monge–Ampère equation with periodic data Un théorème de Liouville pour les solutions de l’équation de Monge–Ampère avec données periodiques
نویسندگان
چکیده
A classical result of Jörgens, Calabi and Pogorelov states that any strictly convex smooth function u with det(D2u)= constant in Rn must be a quadratic polynomial. We establish the following extension: any strictly convex smooth function u with det(D2u) being 1-periodic in each variable must be the sum of a quadratic polynomial and a function which is 1-periodic in each variable. Given any positive periodic right-hand side, the existence and uniqueness of such solutions are well known. 2003 Elsevier SAS. All rights reserved. Résumé Selon un théorème classique de Jörgens, Calabi et Pogorelov, toute solution régulière et strictement convexe de l’équation det(D2u)= constante dans Rn doit être égale à un polynôme quadratique. On démontre le résultat suivant : si u une fonction régulière et strictement convexe telle que det(D2u) est 1-périodique par rapport à chaque variable, alors u est la somme d’un polynôme quadratique et d’une fonction 1-périodique par rapport à chaque variable. Étant donnée une fonction périodique et positive f , l’existence et l’unicité des solutions de det(D2u)= f est un problème bien connu. 2003 Elsevier SAS. All rights reserved. * Corresponding author. E-mail address: [email protected] (Y.Y. Li). 1 Partially supported by National Science Foundation Grant DMS-0140388 and G-37-X71-G4. 2 Partially supported by National Science Foundation Grant DMS-0100819 and a Rutgers University Research Council Grant. 0294-1449/$ – see front matter 2003 Elsevier SAS. All rights reserved. doi:10.1016/j.anihpc.2003.01.005 98 L. Caffarelli, Y.Y. Li / Ann. I. H. Poincaré – AN 21 (2004) 97–120
منابع مشابه
The Monge–Ampère constraint: Matching of isometries, density and regularity, and elastic theories of shallow shells
The main analytical ingredients of the first part of this paper are two independent results: a theorem on approximation of W 2,2 solutions of the Monge-Ampère equation by smooth solutions, and a theorem on the matching (in other words, continuation) of second order isometries to exact isometric embeddings of 2d surface in R. In the second part, we rigorously derive the Γ-limit of 3-dimensional ...
متن کاملLocal Regularity of the Complex Monge-Ampère Equation
Local Regularity of the Complex Monge-Ampère Equation Yu Wang In this thesis, we study the local regularity of the complex Monge-Ampère equation, (√ −1∂∂̄u )n = fdx where √ −1∂∂̄u stands for the complex Hessian form and dx the Lebesgue measure. The underline idea of our work is to consider this equation as a full-nonlinear equation and apply modern theory and techniques of elliptic PDEs. Our main...
متن کاملA Note on Interior W 2,1+ε Estimates for the Monge-ampère Equation
By a variant of the techniques introduced by the first two authors in [DF] to prove that second derivatives of solutions to the Monge-Ampère equation are locally in L logL, we obtain interior W 2,1+ε estimates.
متن کاملRegularity for Solutions of the Monge-ampère Equation
In this paper we prove that a strictly convex Alexandrov solution u of the Monge-Ampère equation, with right hand side bounded away from zero and infinity, is W 2,1 loc . This is obtained by showing higher integrability a-priori estimates for Du, namely Du ∈ L log L for any k ∈ N.
متن کاملSecond Order Stability for the Monge-ampère Equation and Strong Sobolev Convergence of Optimal Transport Maps
The aim of this note is to show that Alexandrov solutions of the Monge-Ampère equation, with right hand side bounded away from zero and infinity, converge strongly in W 2,1 loc if their right hand side converge strongly in Lloc. As a corollary we deduce strong W 1,1 loc stability of optimal transport maps.
متن کامل